Neural Networks for Optimal Approximation of Smooth and Analytic Functions
نویسنده
چکیده
We prove that neural networks with a single hidden layer are capable of providing an optimal order of approximation for functions assumed to possess a given number of derivatives, if the activation function evaluated by each principal element satisfies certain technical conditions. Under these conditions, it is also possible to construct networks that provide a geometric order of approximation for analytic target functions. The permissible activation functions include the squashing function (1 + e) as well as a variety of radial basis functions. Our proofs are constructive. The weights and thresholds of our networks are chosen independently of the target function; we give explicit formulas for the coefficients as simple, continuous, linear functionals of the target function.
منابع مشابه
Neuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملOptimal approximation of piecewise smooth functions using deep ReLU neural networks
We study the necessary and sufficient complexity of ReLU neural networks—in terms of depth and number of weights—which is required for approximating classifier functions in an L-sense. As a model class, we consider the set E(R) of possibly discontinuous piecewise C functions f : [−1/2, 1/2] → R, where the different “smooth regions” of f are separated by C hypersurfaces. For given dimension d ≥ ...
متن کاملCombination of Approximation and Simulation Approaches for Distribution Functions in Stochastic Networks
This paper deals with the fundamental problem of estimating the distribution function (df) of the duration of the longest path in the stochastic activity network such as PERT network. First a technique is introduced to reduce variance in Conditional Monte Carlo Sampling (CMCS). Second, based on this technique a new procedure is developed for CMCS. Third, a combined approach of simulation and ap...
متن کاملImprove Estimation and Operation of Optimal Power Flow(OPF) Using Bayesian Neural Network
The future of development and design is impossible without study of Power Flow(PF), exigency the system outcomes load growth, necessity add generators, transformers and power lines in power system. The urgency for Optimal Power Flow (OPF) studies, in addition to the items listed for the PF and in order to achieve the objective functions. In this paper has been used cost of generator fuel, acti...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کامل